Circles, Angles, and Arcs

Measuring Arcs and Angles

UNDERSTAND An arc is an unbroken part of a circle. An arc contains two endpoints and all the points on a circular curve between those points. The name of an arc contains its endpoints covered by an arc-like symbol, such as $\overparen{P Q}$. Sometimes, another point on the arc is included in the name.

An arc can be measured in two ways: by the length along its curve and by the measure of its central angle. A central angle is an angle whose vertex is the center of a circle. The rays of a central angle pass through the circle and cut off an arc called the intercepted arc. An intercepted arc and its central angle have the same measure. The measure of an arc is indicated by placing the letter m before the arc name, such as $m P Q$.

The blue circle and green circle on the right are concentric circles because they have the same center. $A B$ and $C D$ have the same central angle, $\angle C O D$, and thus same measure, even though $C D$ is longer than $A B$.

$$
\mathrm{m} \overparen{A B}=\mathrm{m} \overparen{C D}=\mathrm{m} \angle C O D
$$

If the central angle increases, the measure of both arcs will likewise increase. If $\overrightarrow{O D}$ is rotated clockwise to lie on top of $\overrightarrow{O C}$, the angle will measure 360°, so one full circle measures 360°.

Circular arcs are classified according to their measure. Minor arcs measure less than 180°. They are typically named using only two points. The green minor arc in circle Q on the right is called $К M$. Major arcs measure more than 180°. They are sometimes named using three points. The blue major arc in circle Q is named $\overparen{K L M}$. An arc measuring exactly 180° may be called a
 semicircle. In circle G on the right, FJH is a semicircle and $\overline{F H}$ is a diameter.

UNDERSTAND An inscribed angle has a vertex on the circle and has rays that contain chords of the circle. An inscribed angle will intercept an arc, just as a central angle does. In the circle on the right, inscribed angle $R P S$ intercepts $R S$. The measure of an inscribed angle is equal to half the measure of its intercepted arc.

Connect

In Circle $E, \mathrm{~m} \angle A B D=49^{\circ}$. Find the measures of $\overparen{A D}, \angle A E D$, and $\angle A C D$.

1

Determine the measure of $\overparen{A D}$.

Let x be the measure of $\overparen{A D}$.

$$
x=\mathrm{m} \overparen{A D}
$$

Angle $A B D$ is an inscribed angle that intercepts $A D$. So:

$$
\begin{aligned}
\mathrm{m} \angle A B D & =\frac{1}{2} \cdot \mathrm{~m} \overparen{A D} \\
49^{\circ} & =\frac{1}{2} \cdot \mathrm{x} \\
98^{\circ} & =x \\
\mathrm{~m} \overparen{A D} & =98^{\circ}
\end{aligned}
$$

Find the measure of $\angle A C D$.

Let z be the measure of $\angle A C D$.

$$
z=\mathrm{m} \angle A C D
$$

Angle $A C D$ is an inscribed angle that intercepts $\overparen{A D}$. So:

$$
\begin{aligned}
\mathrm{m} \angle A C D & =\frac{1}{2} \cdot \mathrm{~m} \overparen{A D} \\
z & =\frac{1}{2} \cdot 98^{\circ} \\
z & =49^{\circ}
\end{aligned}
$$

Based on this example, what can you conclude about two inscribed angles that intercept the same arc? What can you conclude about an inscribed angle and a central angle that intercept the same arc?

Angles Formed by Intersecting Lines

UNDERSTAND When lines and line segments intersect inside a circle, they can form angles that are neither central angles (because their vertexes do not fall on the circle's center) nor inscribed angles (because their vertexes do not fall on one of the circle's points). However, the measures of these angles can be determined if the measures of the arcs they cut off are known.

Recall that a pair of non-adjacent angles formed by two intersecting lines are called vertical angles and that vertical angles are always congruent. When two chords or two secant lines intersect inside a circle, the measure of both vertical angles formed is equal to half the sum of the measures of the intercepted arcs.

$$
x^{\circ}=\frac{1}{2}\left(y^{\circ}+z^{\circ}\right)
$$

UNDERSTAND Secant lines and tangent lines can intersect outside a given circle. When two such lines intersect outside a circle, the measure of the angle at which they intersect is equal to half the difference of the measures of the intercepted arcs.

Two Tangent Lines

A Secant Line and a Tangent Line

In the case where a tangent line and a secant line intersect, imagine shrinking the smaller arc until $y=0$. This would produce a special case in which the secant line intersects the tangent line at the point of tangency. Substituting 0 for y in the formula above tells us that the measure of the angle formed is equal to half the measure of its intercepted arc.

$x^{\circ}=\frac{1}{2} z^{\circ}$

Connect

In the circle, chord $\overline{F G}$ intersects chord $\overline{H J}$ at point K. What are the measures of the four angles formed by the intersection of the chords?

1
Relate the angles to one another.
Angles FKH and JKG are vertical angles, so they are congruent.

Angles FKJ and HKG are also vertical angles, so they are congruent.

Every pair of adjacent angles, such as $\angle F K H$ and $\angle H K G$, form a linear pair, so adjacent angles are supplementary.

3

Find the measure of $\angle F K J$ and $\angle H K G$.
Because angles FKH and HKG are
Find the measure of $\angle F K H$ and $\angle J K G$.
Arc FH and arc GJ are intercepted by vertical angles FKH and JKG.
$\mathrm{m} \angle F K H=\frac{1}{2}(\mathrm{~m} \overparen{F H}+\mathrm{mG})$
$\mathrm{m} \angle F K H=\frac{1}{2}(115+125)$
$\mathrm{m} \angle F K H=\frac{1}{2}(240)$
$\mathrm{m} \angle F K H=120^{\circ}$
Because angles FKH and JKG are
supplementary, they sum to 180°. congruent, they have the same measure.

The measures of $\angle F K H$ and $\angle J K G$ are 120°.
$\mathrm{m} \angle F K H+\mathrm{m} \angle H K G=180^{\circ}$

$$
\begin{aligned}
120^{\circ}+\mathrm{m} \angle H K G & =180^{\circ} \\
\mathrm{m} \angle H K G & =60^{\circ}
\end{aligned}
$$

Because angles FKJ and HKG are congruent, they have the same measure.

- The measures of $\angle F K J$ and $\angle H K G$ are 60°.

EXAMPLEA Secants $\overleftrightarrow{B C}$ and $\overleftrightarrow{D E}$ intersect at point $A . \overleftrightarrow{C F}$ is tangent to the circle at point C and intersects $\overleftrightarrow{D E}$ at point F. What are the measures of $\angle B A D$ and $\angle C F E$?

1
Find the measure of $\angle B A D$.
Angle $B A D$ results from the intersection of two secant lines, so its measure is equal to half the difference of its intercepted arcs. Its intercepted arcs are $\overparen{B D}$ and $\overparen{C E}$.

$$
\begin{aligned}
\mathrm{m} \angle B A D & =\frac{1}{2}(\mathrm{mCE}-\mathrm{m} \overparen{B D}) \\
\mathrm{m} \angle B A D & =\frac{1}{2}\left(80^{\circ}-40^{\circ}\right) \\
\mathrm{m} \angle B A D & =\frac{1}{2}\left(40^{\circ}\right) \\
\mathrm{m} \angle B A D & =20^{\circ}
\end{aligned}
$$

Find the measure of $\angle C F E$.
Angle CFE results from the intersection of a secant line, $\overleftrightarrow{D E}$, and a tangent line, $\overleftrightarrow{C F}$, so its measure is equal to half the difference of its intercepted arcs.
Its intercepted arcs are $\overparen{C E}$ and $\overparen{C D}$. $C D$ is divided into $C B$ and $B D$.

$$
\begin{aligned}
\mathrm{m} \overparen{C D} & =\mathrm{m} \overparen{C B}+\mathrm{m} \overparen{B D} \\
\mathrm{~m} \overparen{C D} & =140^{\circ}+40^{\circ} \\
\mathrm{m} \overparen{C D} & =180^{\circ} \\
\mathrm{m} \angle C F E & =\frac{1}{2}(\mathrm{~m} \overparen{C D}-\mathrm{m} \overparen{C E}) \\
\mathrm{m} \angle C F E & =\frac{1}{2}\left(180^{\circ}-80^{\circ}\right) \\
\mathrm{m} \angle C F E & =\frac{1}{2}\left(100^{\circ}\right) \\
\mathrm{m} \angle C F E & =50^{\circ}
\end{aligned}
$$

EXAMPLE B In the diagram below, $\overline{S T}$ is tangent to circle P at point T. Find the values of x, y, and z.

1
Find the value of x.
The measure of an arc is equal to the measure of its central angle. The central angle of $Q R$ is $\angle Q P R$.
$\mathrm{m} \angle Q P R=105^{\circ}$, so $\mathrm{x}=105^{\circ}$.

3
Find the value of z.
Secant line $S Q$ and tangent line $S T$ intersect outside the circle at point S. They intercept arcs QVT and RT.
Because $\overline{Q T}$ is a diameter of circle $P, \overparen{Q V T}$ is a semicircle that measures 180°.
$\mathrm{m} \angle Q S T=\frac{1}{2}(\mathrm{~m} \overparen{Q V T}-\mathrm{m} \overparen{R T})$

$$
\begin{aligned}
& z=\frac{1}{2}(180-75) \\
& z=\frac{1}{2}(105) \\
& z=52.5^{\circ}
\end{aligned}
$$

Find the value of y.
$\overline{Q T}$ is a diameter of circle P, so $\overparen{Q R T}$ is a semicircle that measures 180°.
The measure of $\overparen{Q R T}$ is equal to the sum of the measures of $Q R$ and $R T$.
$\mathrm{m} \overparen{Q R}+\mathrm{m} \overparen{R T}=\mathrm{m} \overparen{Q R T}$

$$
\begin{aligned}
105^{\circ}+y & =180^{\circ} \\
y & =75^{\circ}
\end{aligned}
$$

What is the measure of $\angle R Q T$ in the circle?

Practice

Identify the measure of the angles in each circle \mathbf{O}.

1.

2.

$\mathrm{m} \angle N O P=$ \qquad

$$
\mathrm{m} \angle N Q P=
$$

\qquad
Use what you know about central angles and inscribed angles.

Identify the measure of the arcs.
3.

4.

$$
\mathrm{m} \overparen{D F}=-\quad \mathrm{m} \overparen{D G F}=
$$

\qquad
REMEMBER A full circle measures 360°.
$\mathrm{mCB}=$ \qquad $\mathrm{m} \widehat{C A B}=$ \qquad

Write true or false for each statement. If the statement is false, rewrite it so that it is true.
5. An angle whose vertex is on the circle and whose rays contain radii is called a central angle.
6. A semicircle is an arc that measures 180°.
\qquad
7. A minor arc has a measure greater than 180°.
\qquad
8. The measure of an angle formed by two secant lines that intersect outside a circle is half the sum of the measures of the intercepted arcs.

Find the measure of each angle or arc in circles V and E.
9.

$m \overparen{W X}=$ \qquad
$\mathrm{m} \angle W Z X=$ \qquad
$\mathrm{m} \angle W Y X=$ \qquad

Choose the best answer.

11. In circle O, angle TOV measures 56°. What is the measure of the arc it intercepts, arc TV?
A. 28°
B. 56°
C. 112°
D. 304°
12. Segments $\overline{P R}$ and $\overline{P Q}$ are tangent to the circle below. Which expression is equivalent to the measure of $\angle Q P R$?

13.

$\mathrm{m} \angle A C D=$ \qquad
$\mathrm{m} \overparen{A D}=$ \qquad
$\mathrm{m} \angle A E D=$ \qquad
12. Points P, Q, and R are on circle N. If $\angle P Q R$ measures 74°, what is the measure of the arc it intercepts, P ?
A. 37°
B. 74°
C. 148°
D. 212°
14. Chords $\overline{F G}$ and $\overline{J K}$ intersect at point H. Which expression is equivalent to the measure of $\angle F H J$?

A. $\frac{1}{2}\left(46^{\circ}\right)$
B. $\frac{1}{2}\left(88^{\circ}\right)$
C. $\frac{1}{2}\left(88^{\circ}-46^{\circ}\right)$
D. $\frac{1}{2}\left(88^{\circ}+46^{\circ}\right)$

Find the value of z.
15.

$$
z=
$$

17.

$$
z=
$$

\qquad
19.

$$
z=
$$

\qquad
16.

$$
z=
$$

18.

$$
z=
$$

20.

$$
z=
$$

21. SHOW A satellite in orbit above Earth's equator has a camera with a 35° viewing angle of Earth. What is the measure of the arc of the equator that can be viewed from the satellite? Explain how you found your answer.

22. PROVE Quadrilateral EFGH is said to be inscribed in the circle below because all of its vertices lie on the circle. Fill in the blanks based on this figure.

$$
\mathrm{m} \overparen{E F}+\mathrm{m} \overparen{F G}+\mathrm{m} \overparen{G H}+\mathrm{m} \overparen{H E}=ـ^{\circ}
$$

$$
\mathrm{m} \angle E=\frac{1}{2}(\mathrm{~m} \overparen{F G}+\mathrm{m} \quad)=\square^{\circ}
$$

$\mathrm{m} \angle F=\frac{1}{2}(\mathrm{~m} \overparen{G H}+\mathrm{m}$ \qquad $=$ \qquad $-$ $\mathrm{m} \angle G=\frac{1}{2}(\mathrm{~m}$ $+m$ \qquad) $=$ \qquad
$\mathrm{m} \angle H=\frac{1}{2}$ (m \qquad $+m$ \qquad $)=$ \qquad $\mathrm{m} \angle E+\mathrm{m} \angle G=$ \qquad \circ
$\mathrm{m} \angle F+\mathrm{m} \angle H=$ \qquad \circ

In a quadrilateral inscribed in a circle, opposite angles are \qquad .

